<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Thesis">
		<site>mtc-m21c.sid.inpe.br 806</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34R/424G29B</identifier>
		<repository>sid.inpe.br/mtc-m21c/2020/03.05.13.27</repository>
		<lastupdate>2020:05.27.11.40.19 urlib.net/www/2017/11.22.19.04 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21c/2020/03.05.13.27.44</metadatarepository>
		<metadatalastupdate>2021:02.08.13.22.45 urlib.net/www/2017/11.22.19.04 simone {D 2020}</metadatalastupdate>
		<secondarykey>INPE-18284-TDI/2960</secondarykey>
		<citationkey>Silva:2020:QuMoTr</citationkey>
		<title>Quantifying and monitoring tropical forest mortality with passive and active optical remote sensing</title>
		<alternatetitle>Quantificando e monitorando a mortalidade de florestas tropicais com sensoriamento remoto ótico passivo e ativo</alternatetitle>
		<course>SER-SRE-SESPG-INPE-MCTIC-GOV-BR</course>
		<year>2020</year>
		<date>2020-03-18</date>
		<thesistype>Tese (Doutorado em Sensoriamento Remoto)</thesistype>
		<secondarytype>TDI</secondarytype>
		<numberofpages>172</numberofpages>
		<numberoffiles>2</numberoffiles>
		<size>34418 KiB</size>
		<author>Silva, Ricardo Dal'Agnol da,</author>
		<committee>Shimabukuro, Yosio Edemir (presidente),</committee>
		<committee>Aragão, Luiz Eduardo de Oliveira e Cruz (orientador),</committee>
		<committee>Galvão, Lênio Soares (orientador),</committee>
		<committee>Liesenberg, Veraldo,</committee>
		<committee>Nelson, Bruce Walker,</committee>
		<e-mailaddress>ricds@hotmail.com</e-mailaddress>
		<university>Instituto Nacional de Pesquisas Espaciais (INPE)</university>
		<city>São José dos Campos</city>
		<transferableflag>1</transferableflag>
		<keywords>forest mortality, Amazon, MODIS, very high resolution, LiDAR, mortalidade florestal, Amazônia, altíssima resolução.</keywords>
		<abstract>Tree mortality is a key process in the global carbon cycle generally linked to climatic feedbacks and accelerated by human-induced disturbances in the Amazon. Remote sensing can complement ground observations of tree mortality to support Amazon-wide detection. However, different from temperate forests, tree mortality detection over tropical forests is challenging because of the high heterogeneity in forest structure and biodiversity. It requires the development of new methods with multiple data sources to address challenges such as the detection of vegetation-specific mortality at the landscape scale; the quantification of individual tree mortality related to logging at the local scale; and the characterization of gap dynamics as a proxy for tree mortality, potentially related to natural and anthropogenic activities, and up-scaling estimates from local to regional scales. Here, the objective was to develop and validate novel approaches for the detection and monitoring of tropical forest mortality, using Moderate Resolution Imaging Spectroradiometer (MODIS), Very High Resolution (VHR) and airborne Light Detection And Ranging (LiDAR) data acquired over the Amazon region. For the vegetation-specific approach at the landscape scale, MODIS data processed by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was used to map the bamboo die-off in the southwest Amazon and to test whether it enhanced fire occurrence. At the individual tree level, multi-temporal VHR data from the WorldView-2 and GeoEye-1 satellites were used to evaluate the detection of canopy tree loss from selective logging at the Jamari National Forest. Finally, to explore the use of gaps as a proxy for tree mortality, five multi-temporal LiDAR datasets, and 610 single-date flight lines were considered to provide a systematic assessment of gaps and tree mortality, and explore their relationships with environmental and climate drivers. Results at the landscape scale, using MODIS (MAIAC) data, showed automatic detection of historical bamboo die-off (accuracy of 79%) and mapping of 15.5 million ha of bamboo-dominated forests. The bamboo-fire hypothesis was not supported, because the bamboo die-off areas did not show higher fire probability than the other areas. However, the fire occurrence was mostly associated with ignition sources from land use, suggesting a bamboo-human-fire association. At the local scale, individual tree losses from logging were successfully detected using VHR satellite imagery and a random forest (RF) model with 64% accuracy. In addition, large-gap openings associated with the tallest trees were more successfully detected by VHR data. At the local scale, LiDAR-gaps delineated using the relative height method, represented at least 50% of the tree mortality. The mortality of shorter trees at the canopy level (<25 m) was more successfully detected than the mortality of taller emergent trees (>25 m). Higher gap fractions (proxy for mortality) were associated with increased water deficit, soil fertility, and the occurrence of degraded and flooded forests. The Amazon-wide tree mortality map showed higher tree mortality rates in the west and southeast regions than in the central-east and north regions. This pattern was consistent with field-based observations. Overall, the findings highlighted the feasibility and importance of using passive and active optical remote sensing for detecting different processes of tropical forest mortality over a broad scale in the Amazon region. RESUMO: A mortalidade das árvores é um processo essencial no ciclo global do carbono, geralmente relacionado com feedbacks climáticos e acelerado por distúrbios antrópicos na Amazônia. O sensoriamento remoto pode complementar as observações de campo, a fim de apoiar a detecção de mortalidade na Amazônia. No entanto, diferentemente de florestas temperadas, a detecção da mortalidade de árvores em florestas tropicais é um desafio devido à alta heterogeneidade da estrutura florestal e biodiversidade. Isso requer o desenvolvimento de novos métodos com diferentes fontes de dados remotos para enfrentar desafios como a detecção de mortalidade de vegetações específicas na escala da paisagem; a quantificação de mortalidade de árvores individuais em escala local; e a caracterização da dinâmica das clareiras como um indicador da mortalidade de árvores, causada por atividades naturais e antropogênicas, calculada a partir do reescalonamento de dados locais para regionais. O objetivo da tese foi desenvolver novas abordagens para a detecção e monitoramento da mortalidade das florestas tropicais usando dados MODIS (MAIAC), de alta resolução espacial (VHR) e de LiDAR aerotransportado, adquiridos na Amazônia. Para a abordagem de vegetação específica em escala de paisagem, os dados MODIS (MAIAC) foram usados para detectar a morte de bambus no sudoeste da Amazônia e testar se ela aumenta a ocorrência de incêndios. No nível de árvores individuais, dados VHR multi-temporais dos satélites WorldView-2 e GeoEye-1 foram usados na detecção da perda de árvores no dossel proveniente de corte seletivo na Floresta Nacional do Jamari. Finalmente, para explorar o uso de clareiras como um indicador de mortalidade, cinco conjuntos de dados LiDAR multi-temporais e 610 linhas de voo mono-temporais foram utilizados para avaliar sistematicamente as clareiras e mortalidade de árvores e suas relações com fatores ambientais e climáticos. Na abordagem de vegetação específica, os resultados mostraram a detecção automática de mortalidade de bambus (precisão de 79%) e o mapeamento de 15,5 milhões de ha de florestas dominadas por bambu. A hipótese do fogo não foi corroborada, pois as áreas de bambu morto não apresentaram maior probabilidade de incêndio do que as outras áreas. No entanto, a ocorrência de incêndio foi associada a fontes de ignição de uso da terra, sugerindo uma associação bambu-homem-fogo. No nível de árvores individuais, os resultados mostraram que as perdas de árvores foram detectadas com sucesso usando imagens VHR e um modelo Random Forest (RF) com 64% de precisão. Além disso, grandes clareiras associadas às árvores mais altas foram detectadas com maior sucesso pelos dados VHR. Finalmente, no estudo das relações entre clareiras e mortalidade em toda a Amazônia, os resultados indicaram que as clareiras detectadas pelo LiDAR, usando o método da altura relativa, representaram pelo menos 50% da mortalidade das árvores. A mortalidade de árvores mais baixas no nível do dossel (<25 m) foi detectada com maior sucesso do que a mortalidade de árvores emergentes mais altas (> 25 m). A ocorrência de maiores frações de clareira (indicador de mortalidade) foi associada ao aumento do déficit hídrico, a fertilidade do solo e a presença de florestas degradadas e inundadas. O mapa de mortalidade para Amazônia mostrou maiores taxas de mortalidade nas regiões oeste e sudeste do que nas regiões centro-leste e norte. Esse padrão foi consistente com as observações de campo. No geral, os resultados destacaram a viabilidade e importância do uso de sensoriamento remoto óptico passivo e ativo para detectar diferentes processos de mortalidade das florestas tropicais em ampla escala na Amazônia.</abstract>
		<area>SRE</area>
		<language>en</language>
		<targetfile>publicacao.pdf</targetfile>
		<usergroup>ricardo.silva</usergroup>
		<visibility>shown</visibility>
		<copyright>urlib.net/www/2012/11.12.15.10</copyright>
		<rightsholder>originalauthor yes</rightsholder>
		<readpermission>allow from all</readpermission>
		<documentstage>not transferred</documentstage>
		<mirrorrepository>urlib.net/www/2017/11.22.19.04.03</mirrorrepository>
		<nexthigherunit>8JMKD3MGPCW/3F3NU5S</nexthigherunit>
		<dissemination>BNDEPOSITOLEGAL</dissemination>
		<hostcollection>urlib.net/www/2017/11.22.19.04</hostcollection>
		<agreement>agreement.html autorizacao.pdf .htaccess .htaccess2</agreement>
		<lasthostcollection>urlib.net/www/2017/11.22.19.04</lasthostcollection>
		<supervisor>Galvão, Lênio Soares,</supervisor>
		<supervisor>Aragão, Luiz Eduardo de Oliveira e Cruz,</supervisor>
		<url>http://mtc-m21c.sid.inpe.br/rep-/sid.inpe.br/mtc-m21c/2020/03.05.13.27</url>
	</metadata>
</metadatalist>